pP-secSUMO3

Pichia pastoris vector for regulated expression of secreted recombinant proteins with a cleavable 6xHis-SUMO3 tag.

Sequence Author: LifeSensors

|Download SnapGene Viewer
Explore Over 2.7k Plasmids: Yeast Plasmids | More Plasmid Sets
No matches
BglII (1) AlwNI (3527) PspFI (3419) BseYI (3415) HaeII (3359) BssSαI (3284) PciI (3111) MluI (3022) BsrGI (3015) EcoRV (2848) DraIII (2763) FseI (2686) SexAI * (2573) SgrAI (2524) SmaI (2500) TspMI - XmaI (2498) AatII (2456) ZraI (2454) BssHII - MauBI (2446) MscI (2413) NcoI (2408) BtgZI (1983) BamHI (1924) AleI (76) BmrI (178) PflMI (190) Eco53kI (206) BanII - SacI (208) DraI - PmeI (413) NsiI (677) BstXI - XcmI (706) MfeI (864) HindIII (872) BstBI (933) BstAPI (995) PsiI (1136) BsrDI (1155) PaeR7I - XhoI (1184) 6xHis EcoNI (1226) PstI - SbfI (1227) BsgI (1328) BsmBI (1494) BsmBI - XbaI (1518) NotI (1525) SacII (1531) Acc65I (1532) KpnI (1536) EcoRI (1538) BfuAI - BspMI (1555) SalI (1561) AccI (1562) 6xHis AgeI (1643) BsiWI (1775) pP-secSUMO3 3840 bp
BglII  (1)
1 site
A G A T C T T C T A G A
AlwNI  (3527)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
PspFI  (3419)
1 site
C C C A G C G G G T C G
BseYI  (3415)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its electrophoretic mobility.
HaeII  (3359)
1 site
R G C G C Y Y C G C G R
BssSαI  (3284)
1 site
C A C G A G G T G C T C
PciI  (3111)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
MluI  (3022)
1 site
A C G C G T T G C G C A
BsrGI  (3015)
1 site
T G T A C A A C A T G T

BsrGI is typically used at 37°C, but is even more active at 60°C.
EcoRV  (2848)
1 site
G A T A T C C T A T A G

EcoRV is reportedly more prone than its isoschizomer Eco32I to delete a base after cleavage.
DraIII  (2763)
1 site
C A C N N N G T G G T G N N N C A C

Sticky ends from different DraIII sites may not be compatible.
FseI  (2686)
1 site
G G C C G G C C C C G G C C G G

FseI gradually loses activity when stored at -20°C.
SexAI  (2573)
1 site
A C C W G G T T G G W C C A
* Blocked by Dcm methylation.
Sticky ends from different SexAI sites may not be compatible.
SgrAI  (2524)
1 site
C R C C G G Y G G Y G G C C R C

Efficient cleavage requires at least two copies of the SgrAI recognition sequence.
SmaI  (2500)
1 site
C C C G G G G G G C C C

SmaI can be used at 37°C for brief incubations.
TspMI  (2498)
1 site
C C C G G G G G G C C C
XmaI  (2498)
1 site
C C C G G G G G G C C C

Cleavage may be enhanced when more than one copy of the XmaI recognition sequence is present.
AatII  (2456)
1 site
G A C G T C C T G C A G
ZraI  (2454)
1 site
G A C G T C C T G C A G
BssHII  (2446)
1 site
G C G C G C C G C G C G

BssHII is typically used at 50°C, but is 75% active at 37°C.
MauBI  (2446)
1 site
C G C G C G C G G C G C G C G C
MscI  (2413)
1 site
T G G C C A A C C G G T
NcoI  (2408)
1 site
C C A T G G G G T A C C
BtgZI  (1983)
1 site
G C G A T G ( N ) 10 C G C T A C ( N ) 10 ( N ) 4

Sticky ends from different BtgZI sites may not be compatible.
After cleavage, BtgZI can remain bound to DNA and alter its electrophoretic mobility.
BtgZI is typically used at 60°C, but is 75% active at 37°C.
BamHI  (1924)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF® (but not the original BamHI) can remain bound to DNA and alter its electrophoretic mobility.
AleI  (76)
1 site
C A C N N N N G T G G T G N N N N C A C
BmrI  (178)
1 site
A C T G G G ( N ) 4 N T G A C C C ( N ) 4

The 1-base overhangs produced by BmrI may be hard to ligate.
Sticky ends from different BmrI sites may not be compatible.
Unlike most restriction enzymes, BmrI can cleave DNA in the absence of magnesium.
PflMI  (190)
1 site
C C A N N N N N T G G G G T N N N N N A C C

Sticky ends from different PflMI sites may not be compatible.
Eco53kI  (206)
1 site
G A G C T C C T C G A G
BanII  (208)
1 site
G R G C Y C C Y C G R G

Sticky ends from different BanII sites may not be compatible.
SacI  (208)
1 site
G A G C T C C T C G A G
DraI  (413)
1 site
T T T A A A A A A T T T
PmeI  (413)
1 site
G T T T A A A C C A A A T T T G
NsiI  (677)
1 site
A T G C A T T A C G T A
BstXI  (706)
1 site
C C A N N N N N N T G G G G T N N N N N N A C C

Sticky ends from different BstXI sites may not be compatible.
XcmI  (706)
1 site
C C A N N N N N N N N N T G G G G T N N N N N N N N N A C C

The 1-base overhangs produced by XcmI may be hard to ligate.
Sticky ends from different XcmI sites may not be compatible.
MfeI  (864)
1 site
C A A T T G G T T A A C
HindIII  (872)
1 site
A A G C T T T T C G A A
BstBI  (933)
1 site
T T C G A A A A G C T T
BstAPI  (995)
1 site
G C A N N N N N T G C C G T N N N N N A C G

Sticky ends from different BstAPI sites may not be compatible.
PsiI  (1136)
1 site
T T A T A A A A T A T T
BsrDI  (1155)
1 site
G C A A T G N N C G T T A C

Sticky ends from different BsrDI sites may not be compatible.
PaeR7I  (1184)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
XhoI  (1184)
1 site
C T C G A G G A G C T C
EcoNI  (1226)
1 site
C C T N N N N N A G G G G A N N N N N T C C

The 1-base overhangs produced by EcoNI may be hard to ligate.
Sticky ends from different EcoNI sites may not be compatible.
PstI  (1227)
1 site
C T G C A G G A C G T C
SbfI  (1227)
1 site
C C T G C A G G G G A C G T C C
BsgI  (1328)
1 site
G T G C A G ( N ) 14 N N C A C G T C ( N ) 14

Efficient cleavage requires at least two copies of the BsgI recognition sequence.
Sticky ends from different BsgI sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
BsmBI  (1494)
2 sites
C G T C T C N G C A G A G N ( N ) 4

Sticky ends from different BsmBI sites may not be compatible.
BsmBI-v2 is an improved version of BsmBI.
BsmBI  (1518)
2 sites
C G T C T C N G C A G A G N ( N ) 4

Sticky ends from different BsmBI sites may not be compatible.
BsmBI-v2 is an improved version of BsmBI.
XbaI  (1518)
1 site
T C T A G A A G A T C T
NotI  (1525)
1 site
G C G G C C G C C G C C G G C G
SacII  (1531)
1 site
C C G C G G G G C G C C

Efficient cleavage requires at least two copies of the SacII recognition sequence.
Acc65I  (1532)
1 site
G G T A C C C C A T G G
KpnI  (1536)
1 site
G G T A C C C C A T G G
EcoRI  (1538)
1 site
G A A T T C C T T A A G
BfuAI  (1555)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BfuAI recognition sequence.
Sticky ends from different BfuAI sites may not be compatible.
BfuAI is typically used at 50°C, but is 50% active at 37°C.
BspMI  (1555)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BspMI recognition sequence.
Sticky ends from different BspMI sites may not be compatible.
SalI  (1561)
1 site
G T C G A C C A G C T G
AccI  (1562)
1 site
G T M K A C C A K M T G

Efficient cleavage with AccI requires ≥13 bp on each side of the recognition sequence.
Sticky ends from different AccI sites may not be compatible.
AgeI  (1643)
1 site
A C C G G T T G G C C A
BsiWI  (1775)
1 site
C G T A C G G C A T G C

BsiWI is typically used at 55°C, but is 50% active at 37°C.
AOX1 promoter
2 .. 940  =  939 bp
inducible promoter, regulated by methanol
AOX1 promoter
2 .. 940  =  939 bp
inducible promoter, regulated by methanol
ori
3172 .. 3760  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
ori
3172 .. 3760  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
α-factor secretion signal
941 .. 1195  =  255 bp
85 amino acids  =  8.9 kDa
2 segments
   Segment 1:  presequence  
   941 .. 997  =  57 bp
   19 amino acids  =  2.0 kDa
Product: N-terminal secretion signal from S. cerevisiae alpha-factor
Cleavage by the Kex2 protease occurs after the dibasic KR sequence.
α-factor secretion signal
941 .. 1195  =  255 bp
85 amino acids  =  8.9 kDa
2 segments
   Segment 2:  pro region  
   998 .. 1195  =  198 bp
   66 amino acids  =  7.0 kDa
Product: N-terminal secretion signal from S. cerevisiae alpha-factor
Cleavage by the Kex2 protease occurs after the dibasic KR sequence.
α-factor secretion signal
941 .. 1195  =  255 bp
85 amino acids  =  8.9 kDa
2 segments
Product: N-terminal secretion signal from S. cerevisiae alpha-factor
Cleavage by the Kex2 protease occurs after the dibasic KR sequence.
6xHis
1199 .. 1216  =  18 bp
6 amino acids  =  840.9 Da
Product: 6xHis affinity tag
6xHis
1199 .. 1216  =  18 bp
6 amino acids  =  840.9 Da
Product: 6xHis affinity tag
SUMO3
1229 .. 1498  =  270 bp
90 amino acids  =  10.3 kDa
Product: human small ubiquitin-related modifier 3
SUMO3
1229 .. 1498  =  270 bp
90 amino acids  =  10.3 kDa
Product: human small ubiquitin-related modifier 3
TEF1 promoter
1925 .. 2336  =  412 bp
promoter for EF-1α
TEF1 promoter
1925 .. 2336  =  412 bp
promoter for EF-1α
BleoR
2410 .. 2784  =  375 bp
124 amino acids  =  13.8 kDa
Product: antibiotic-binding protein
confers resistance to bleomycin, phleomycin, and Zeocin™
BleoR
2410 .. 2784  =  375 bp
124 amino acids  =  13.8 kDa
Product: antibiotic-binding protein
confers resistance to bleomycin, phleomycin, and Zeocin™
CYC1 terminator
2850 .. 3097  =  248 bp
transcription terminator for CYC1
CYC1 terminator
2850 .. 3097  =  248 bp
transcription terminator for CYC1
AOX1 terminator
1664 .. 1910  =  247 bp
transcription terminator for AOX1
AOX1 terminator
1664 .. 1910  =  247 bp
transcription terminator for AOX1
MCS
1518 .. 1566  =  49 bp
multiple cloning site
MCS
1518 .. 1566  =  49 bp
multiple cloning site
EM7 promoter
2344 .. 2391  =  48 bp
synthetic bacterial promoter
EM7 promoter
2344 .. 2391  =  48 bp
synthetic bacterial promoter
6xHis
1567 .. 1584  =  18 bp
6 amino acids  =  840.9 Da
Product: 6xHis affinity tag
6xHis
1567 .. 1584  =  18 bp
6 amino acids  =  840.9 Da
Product: 6xHis affinity tag
ORF:  2410 .. 2784  =  375 bp
ORF:  124 amino acids  =  13.8 kDa
ORF:  941 .. 1522  =  582 bp
ORF:  193 amino acids  =  21.3 kDa
ORF:  486 .. 725  =  240 bp
ORF:  79 amino acids  =  9.2 kDa
ORF:  2356 .. 2853  =  498 bp
ORF:  165 amino acids  =  17.5 kDa
ORF:  2403 .. 2690  =  288 bp
ORF:  95 amino acids  =  10.1 kDa
Click here to try SnapGene

Download pP-secSUMO3.dna file

SnapGene

SnapGene is the easiest way to plan, visualize and document your everyday molecular biology procedures

  • Fast accurate construct design for all major molecular cloning techniques
  • Validate sequenced constructs using powerful alignment tools
  • Customize plasmid maps with flexible annotation and visualization controls
  • Automatically generate a rich graphical history of every edit and procedure

SnapGene Viewer

SnapGene Viewer is free software that allows molecular biologists to create, browse, and share richly annotated sequence files.

  • Gain unparalleled visibility of your plasmids, DNA and protein sequences
  • Annotate features on your plasmids using the curated feature database
  • Store, search, and share your sequences, files and maps

Individual Sequences & Maps

The maps, notes, and annotations in the zip file on this page are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as ’’www.snapgene.com/resources’’. Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Discover the most user-friendly molecular biology experience.