pSF-CMV-EMCV-RLuc

Mammalian vector for co-expressing a gene together with Renilla luciferase expressed from the encephalomyocarditis virus IRES.

Sequence Author: Oxford Genetics

|Download SnapGene Viewer
Explore Over 2.7k Plasmids: Luciferase Vectors | More Plasmid Sets
No matches
PmeI (5623) RsrII (5316) PflFI - Tth111I (4918) PmeI (4575) PpuMI - SanDI (4509) AscI (4418) FseI (4272) NaeI (4270) NgoMIV (4268) SwaI (4166) BspHI (3997) AlwNI (3693) BssSI (3450) SwaI (3273) PacI (3147) BstEII (3121) 3' β-globin insulator PstI - SbfI (3015) AsiSI - PvuI (5) BglII (232) CMV enhancer SnaBI (566) BglII (816) EagI - NotI (858) Eco53kI (879) SacI (881) EcoRI (885) NcoI (905) EcoRV (921) AbsI - PaeR7I - PspXI - XhoI (928) XbaI (937) BseRI - BsgI (940) stop codons BspDI - ClaI (977) AfeI (997) PspOMI (1101) ApaI (1105) AvrII (1139) PmlI (1304) AarI (1327) DraIII (1351) PflMI (1441) BmgBI (1530) BstAPI (1753) AanI (1857) Bpu10I (2213) NheI (2499) BmtI (2503) stop codons AanI (2649) HpaI (2669) MfeI (2678) pSF-CMV-EMCV-RLuc 5742 bp
PmeI  (5623)
2 sites
G T T T A A A C C A A A T T T G
RsrII  (5316)
1 site
C G G W C C G G C C W G G C

Efficient cleavage requires at least two copies of the RsrII recognition sequence.
Sticky ends from different RsrII sites may not be compatible.
For full activity, add fresh DTT.
PflFI  (4918)
1 site
G A C N N N G T C C T G N N N C A G

The 1-base overhangs produced by PflFI may be hard to ligate.
Sticky ends from different PflFI sites may not be compatible.
Tth111I  (4918)
1 site
G A C N N N G T C C T G N N N C A G

The 1-base overhangs produced by Tth111I may be hard to ligate.
Sticky ends from different Tth111I sites may not be compatible.
PmeI  (4575)
2 sites
G T T T A A A C C A A A T T T G
PpuMI  (4509)
1 site
R G G W C C Y Y C C W G G R

Sticky ends from different PpuMI sites may not be compatible.
SanDI  (4509)
1 site
G G G W C C C C C C W G G G

Sticky ends from different SanDI sites may not be compatible.
AscI  (4418)
1 site
G G C G C G C C C C G C G C G G
FseI  (4272)
1 site
G G C C G G C C C C G G C C G G

FseI gradually loses activity when stored at -20°C.
NaeI  (4270)
1 site
G C C G G C C G G C C G

Efficient cleavage requires at least two copies of the NaeI recognition sequence.
NgoMIV  (4268)
1 site
G C C G G C C G G C C G

Efficient cleavage requires at least two copies of the NgoMIV recognition sequence.
SwaI  (4166)
2 sites
A T T T A A A T T A A A T T T A

SwaI is typically used at 25°C, but is 50% active at 37°C.
BspHI  (3997)
1 site
T C A T G A A G T A C T
AlwNI  (3693)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
BssSI  (3450)
1 site
C A C G A G G T G C T C
SwaI  (3273)
2 sites
A T T T A A A T T A A A T T T A

SwaI is typically used at 25°C, but is 50% active at 37°C.
PacI  (3147)
1 site
T T A A T T A A A A T T A A T T
BstEII  (3121)
1 site
G G T N A C C C C A N T G G

Sticky ends from different BstEII sites may not be compatible.
BstEII is typically used at 60°C, but is 50% active at 37°C.
PstI  (3015)
1 site
C T G C A G G A C G T C
SbfI  (3015)
1 site
C C T G C A G G G G A C G T C C
AsiSI  (5)
1 site
G C G A T C G C C G C T A G C G
PvuI  (5)
1 site
C G A T C G G C T A G C
BglII  (232)
2 sites
A G A T C T T C T A G A
SnaBI  (566)
1 site
T A C G T A A T G C A T
BglII  (816)
2 sites
A G A T C T T C T A G A
EagI  (858)
1 site
C G G C C G G C C G G C
NotI  (858)
1 site
G C G G C C G C C G C C G G C G
Eco53kI  (879)
1 site
G A G C T C C T C G A G
SacI  (881)
1 site
G A G C T C C T C G A G
EcoRI  (885)
1 site
G A A T T C C T T A A G
NcoI  (905)
1 site
C C A T G G G G T A C C
EcoRV  (921)
1 site
G A T A T C C T A T A G

EcoRV is reportedly more prone than its isoschizomer Eco32I to delete a base after cleavage.
AbsI  (928)
1 site
C C T C G A G G G G A G C T C C
PaeR7I  (928)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
PspXI  (928)
1 site
V C T C G A G B B G A G C T C V
XhoI  (928)
1 site
C T C G A G G A G C T C
XbaI  (937)
1 site
T C T A G A A G A T C T
BseRI  (940)
1 site
G A G G A G ( N ) 8 N N C T C C T C ( N ) 8

Sticky ends from different BseRI sites may not be compatible.
BseRI quickly loses activity at 37°C.
Prolonged incubation with BseRI may lead to degradation of the DNA.
BsgI  (940)
1 site
G T G C A G ( N ) 14 N N C A C G T C ( N ) 14

Efficient cleavage requires at least two copies of the BsgI recognition sequence.
Sticky ends from different BsgI sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
BspDI  (977)
1 site
A T C G A T T A G C T A
ClaI  (977)
1 site
A T C G A T T A G C T A
AfeI  (997)
1 site
A G C G C T T C G C G A
PspOMI  (1101)
1 site
G G G C C C C C C G G G
ApaI  (1105)
1 site
G G G C C C C C C G G G

ApaI can be used between 25°C and 37°C.
AvrII  (1139)
1 site
C C T A G G G G A T C C
PmlI  (1304)
1 site
C A C G T G G T G C A C
AarI  (1327)
1 site
C A C C T G C ( N ) 4 G T G G A C G ( N ) 4 ( N ) 4

Cleavage may be enhanced when more than one copy of the AarI recognition sequence is present.
Sticky ends from different AarI sites may not be compatible.
After cleavage, AarI can remain bound to DNA and alter its electrophoretic mobility.
DraIII  (1351)
1 site
C A C N N N G T G G T G N N N C A C

Sticky ends from different DraIII sites may not be compatible.
PflMI  (1441)
1 site
C C A N N N N N T G G G G T N N N N N A C C

Sticky ends from different PflMI sites may not be compatible.
BmgBI  (1530)
1 site
C A C G T C G T G C A G

This recognition sequence is asymmetric, so ligating blunt ends generated by BmgBI will not always regenerate a BmgBI site.
BstAPI  (1753)
1 site
G C A N N N N N T G C C G T N N N N N A C G

Sticky ends from different BstAPI sites may not be compatible.
AanI  (1857)
2 sites
T T A T A A A A T A T T
Bpu10I  (2213)
1 site
C C T N A G C G G A N T C G

Cleavage may be enhanced when more than one copy of the Bpu10I recognition sequence is present.
This recognition sequence is asymmetric, so ligating sticky ends generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
NheI  (2499)
1 site
G C T A G C C G A T C G
BmtI  (2503)
1 site
G C T A G C C G A T C G
AanI  (2649)
2 sites
T T A T A A A A T A T T
HpaI  (2669)
1 site
G T T A A C C A A T T G
MfeI  (2678)
1 site
C A A T T G G T T A A C
RLuc
1565 .. 2503  =  939 bp
312 amino acids  =  36.1 kDa
Product: Renilla luciferase
codon-optimized synthetic gene
RLuc
1565 .. 2503  =  939 bp
312 amino acids  =  36.1 kDa
Product: Renilla luciferase
codon-optimized synthetic gene
NeoR/KanR
4672 .. 5466  =  795 bp
264 amino acids  =  29.0 kDa
Product: aminoglycoside phosphotransferase from Tn5
confers resistance to neomycin, kanamycin, and G418 (Geneticin®)
NeoR/KanR
4672 .. 5466  =  795 bp
264 amino acids  =  29.0 kDa
Product: aminoglycoside phosphotransferase from Tn5
confers resistance to neomycin, kanamycin, and G418 (Geneticin®)
ori
3338 .. 3926  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
ori
3338 .. 3926  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
IRES
1012 .. 1562  =  551 bp
internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV)
IRES
1012 .. 1562  =  551 bp
internal ribosome entry site (IRES) of the encephalomyocarditis virus (EMCV)
CMV enhancer
287 .. 590  =  304 bp
human cytomegalovirus immediate early enhancer
CMV enhancer
287 .. 590  =  304 bp
human cytomegalovirus immediate early enhancer
CMV promoter
591 .. 794  =  204 bp
human cytomegalovirus (CMV) immediate early promoter
CMV promoter
591 .. 794  =  204 bp
human cytomegalovirus (CMV) immediate early promoter
rrnG terminator
2860 .. 2996  =  137 bp
transcription terminator from the E. coli ribosomal RNA rrnG operon (Albrechtsen et al., 1991)
rrnG terminator
2860 .. 2996  =  137 bp
transcription terminator from the E. coli ribosomal RNA rrnG operon (Albrechtsen et al., 1991)
rrnG terminator
5479 .. 5615  =  137 bp
transcription terminator from the E. coli ribosomal RNA rrnG operon (Albrechtsen et al., 1991)
rrnG terminator
5479 .. 5615  =  137 bp
transcription terminator from the E. coli ribosomal RNA rrnG operon (Albrechtsen et al., 1991)
SV40 poly(A) signal
2548 .. 2669  =  122 bp
SV40 polyadenylation signal
SV40 poly(A) signal
2548 .. 2669  =  122 bp
SV40 polyadenylation signal
MCS
857 .. 942  =  86 bp
multiple cloning site
MCS
857 .. 942  =  86 bp
multiple cloning site
5' β-globin insulator
18 .. 89  =  72 bp
insulator upstream of the human β-globin locus (Farrell et al., 2002)
5' β-globin insulator
18 .. 89  =  72 bp
insulator upstream of the human β-globin locus (Farrell et al., 2002)
3' β-globin insulator
3041 .. 3112  =  72 bp
insulator downstream of the human β-globin locus (Farrell et al., 2002)
3' β-globin insulator
3041 .. 3112  =  72 bp
insulator downstream of the human β-globin locus (Farrell et al., 2002)
T7 terminator
2784 .. 2830  =  47 bp
transcription terminator for bacteriophage T7 RNA polymerase
T7 terminator
2784 .. 2830  =  47 bp
transcription terminator for bacteriophage T7 RNA polymerase
stop codons
961 .. 971  =  11 bp
stop codons in all three reading frames
stop codons
961 .. 971  =  11 bp
stop codons in all three reading frames
stop codons
2506 .. 2516  =  11 bp
stop codons in all three reading frames
stop codons
2506 .. 2516  =  11 bp
stop codons in all three reading frames
RBS
4659 .. 4664  =  6 bp
Shine-Dalgarno ribosome binding site
RBS
4659 .. 4664  =  6 bp
Shine-Dalgarno ribosome binding site
Kozak sequence
903 .. 909  =  7 bp
Kozak sequence
903 .. 909  =  7 bp
RBS
893 .. 898  =  6 bp
Shine-Dalgarno ribosome binding site
RBS
893 .. 898  =  6 bp
Shine-Dalgarno ribosome binding site
ORF:  4672 .. 5466  =  795 bp
ORF:  264 amino acids  =  29.0 kDa
ORF:  1565 .. 2503  =  939 bp
ORF:  312 amino acids  =  36.1 kDa
ORF:  2885 .. 3316  =  432 bp
ORF:  143 amino acids  =  16.3 kDa
ORF:  4844 .. 5230  =  387 bp
ORF:  128 amino acids  =  14.7 kDa
ORF:  5504 .. 196  =  435 bp
ORF:  144 amino acids  =  16.1 kDa
ORF:  1496 .. 2419  =  924 bp
ORF:  307 amino acids  =  36.6 kDa
Click here to try SnapGene

Download pSF-CMV-EMCV-RLuc.dna file

SnapGene

SnapGene is the easiest way to plan, visualize and document your everyday molecular biology procedures

  • Fast accurate construct design for all major molecular cloning techniques
  • Validate sequenced constructs using powerful alignment tools
  • Customize plasmid maps with flexible annotation and visualization controls
  • Automatically generate a rich graphical history of every edit and procedure

SnapGene Viewer

SnapGene Viewer is free software that allows molecular biologists to create, browse, and share richly annotated sequence files.

  • Gain unparalleled visibility of your plasmids, DNA and protein sequences
  • Annotate features on your plasmids using the curated feature database
  • Store, search, and share your sequences, files and maps

Individual Sequences & Maps

The maps, notes, and annotations in the zip file on this page are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as ’’www.snapgene.com/resources’’. Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Discover the most user-friendly molecular biology experience.