pAcGFP1

Vector for expressing AcGFP1 in bacteria.

Sequence Author: Clontech (TaKaRa)

|Download SnapGene Viewer
No matches
BspQI - SapI (3346) AflIII - PciI (3229) PspFI (2929) BseYI (2925) AlwNI (2820) AhdI (2341) BmrI (2301) BsaI (2275) BpmI (2272) FspI (2118) PvuI (1972) ScaI (1860) XmnI (1741) SspI (1536) lac operator ATG HindIII (234) BfuAI - BspMI (239) SphI (244) PstI - SbfI (250) SalI (252) AccI (253) HincII (254) BamHI (264) AvaI - BsoBI - TspMI - XmaI (269) SmaI (271) Acc65I (273) AgeI (276) KpnI (277) NcoI (287) KasI (301) NarI (302) SfoI (303) PluTI (305) MscI (362) BstEII (471) Bpu10I (481) Bsu36I (557) BssHII (615) DraIII (738) EcoNI (913) PpuMI (918) PflMI (987) NotI (1010) ApoI - EcoRI (1024) StuI (1084) SpeI (1088) BsiWI (1098) PspOMI (1103) ApaI - BanII (1107) NdeI (1299) BstAPI (1300) AflII (1356) ZraI (1420) AatII (1422) pAcGFP1 3354 bp
BspQI  (3346)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different BspQI sites may not be compatible.
SapI  (3346)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different SapI sites may not be compatible.
SapI gradually settles in solution, so a tube of SapI should be mixed before removing an aliquot.
AflIII  (3229)
1 site
A C R Y G T T G Y R C A

Sticky ends from different AflIII sites may not be compatible.
PciI  (3229)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
PspFI  (2929)
1 site
C C C A G C G G G T C G
BseYI  (2925)
1 site
C C C A G C G G G T C G

After cleavage, BseYI can remain bound to DNA and alter its electrophoretic mobility.
AlwNI  (2820)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
AhdI  (2341)
1 site
G A C N N N N N G T C C T G N N N N N C A G

The 1-base overhangs produced by AhdI may be hard to ligate.
Sticky ends from different AhdI sites may not be compatible.
BmrI  (2301)
1 site
A C T G G G ( N ) 4 N T G A C C C ( N ) 4

The 1-base overhangs produced by BmrI may be hard to ligate.
Sticky ends from different BmrI sites may not be compatible.
Unlike most restriction enzymes, BmrI can cleave DNA in the absence of magnesium.
BsaI  (2275)
1 site
G G T C T C N C C A G A G N ( N ) 4

Sticky ends from different BsaI sites may not be compatible.
BsaI can be used between 37°C and 50°C.
BpmI  (2272)
1 site
C T G G A G ( N ) 14 N N G A C C T C ( N ) 14

Efficient cleavage requires at least two copies of the BpmI recognition sequence.
Sticky ends from different BpmI sites may not be compatible.
After cleavage, BpmI can remain bound to DNA and alter its electrophoretic mobility.
BpmI quickly loses activity at 37°C.
FspI  (2118)
1 site
T G C G C A A C G C G T
PvuI  (1972)
1 site
C G A T C G G C T A G C
ScaI  (1860)
1 site
A G T A C T T C A T G A
XmnI  (1741)
1 site
G A A N N N N T T C C T T N N N N A A G
SspI  (1536)
1 site
A A T A T T T T A T A A
HindIII  (234)
1 site
A A G C T T T T C G A A
BfuAI  (239)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BfuAI recognition sequence.
Sticky ends from different BfuAI sites may not be compatible.
BfuAI is typically used at 50°C, but is 50% active at 37°C.
BspMI  (239)
1 site
A C C T G C ( N ) 4 T G G A C G ( N ) 4 ( N ) 4

Efficient cleavage requires at least two copies of the BspMI recognition sequence.
Sticky ends from different BspMI sites may not be compatible.
SphI  (244)
1 site
G C A T G C C G T A C G
PstI  (250)
1 site
C T G C A G G A C G T C
SbfI  (250)
1 site
C C T G C A G G G G A C G T C C
SalI  (252)
1 site
G T C G A C C A G C T G
AccI  (253)
1 site
G T M K A C C A K M T G

Efficient cleavage with AccI requires ≥13 bp on each side of the recognition sequence.
Sticky ends from different AccI sites may not be compatible.
HincII  (254)
1 site
G T Y R A C C A R Y T G
BamHI  (264)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF® (but not the original BamHI) can remain bound to DNA and alter its electrophoretic mobility.
AvaI  (269)
1 site
C Y C G R G G R G C Y C

Sticky ends from different AvaI sites may not be compatible.
BsoBI  (269)
1 site
C Y C G R G G R G C Y C

Sticky ends from different BsoBI sites may not be compatible.
BsoBI is typically used at 37°C, but can be used at temperatures up to 65°C.
TspMI  (269)
1 site
C C C G G G G G G C C C
XmaI  (269)
1 site
C C C G G G G G G C C C

Cleavage may be enhanced when more than one copy of the XmaI recognition sequence is present.
SmaI  (271)
1 site
C C C G G G G G G C C C

SmaI can be used at 37°C for brief incubations.
Acc65I  (273)
1 site
G G T A C C C C A T G G
AgeI  (276)
1 site
A C C G G T T G G C C A
KpnI  (277)
1 site
G G T A C C C C A T G G
NcoI  (287)
1 site
C C A T G G G G T A C C
KasI  (301)
1 site
G G C G C C C C G C G G
NarI  (302)
1 site
G G C G C C C C G C G G

Efficient cleavage requires at least two copies of the NarI recognition sequence.
SfoI  (303)
1 site
G G C G C C C C G C G G
PluTI  (305)
1 site
G G C G C C C C G C G G

Efficient cleavage requires at least two copies of the PluTI recognition sequence.
MscI  (362)
1 site
T G G C C A A C C G G T
BstEII  (471)
1 site
G G T N A C C C C A N T G G

Sticky ends from different BstEII sites may not be compatible.
BstEII is typically used at 60°C, but is 50% active at 37°C.
Bpu10I  (481)
1 site
C C T N A G C G G A N T C G

Cleavage may be enhanced when more than one copy of the Bpu10I recognition sequence is present.
This recognition sequence is asymmetric, so ligating sticky ends generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
Bsu36I  (557)
1 site
C C T N A G G G G A N T C C

Sticky ends from different Bsu36I sites may not be compatible.
BssHII  (615)
1 site
G C G C G C C G C G C G

BssHII is typically used at 50°C, but is 75% active at 37°C.
DraIII  (738)
1 site
C A C N N N G T G G T G N N N C A C

Sticky ends from different DraIII sites may not be compatible.
EcoNI  (913)
1 site
C C T N N N N N A G G G G A N N N N N T C C

The 1-base overhangs produced by EcoNI may be hard to ligate.
Sticky ends from different EcoNI sites may not be compatible.
PpuMI  (918)
1 site
R G G W C C Y Y C C W G G R

Sticky ends from different PpuMI sites may not be compatible.
PflMI  (987)
1 site
C C A N N N N N T G G G G T N N N N N A C C

Sticky ends from different PflMI sites may not be compatible.
NotI  (1010)
1 site
G C G G C C G C C G C C G G C G
ApoI  (1024)
1 site
R A A T T Y Y T T A A R

ApoI is typically used at 50°C, but is 50% active at 37°C.
EcoRI  (1024)
1 site
G A A T T C C T T A A G
StuI  (1084)
1 site
A G G C C T T C C G G A
SpeI  (1088)
1 site
A C T A G T T G A T C A
BsiWI  (1098)
1 site
C G T A C G G C A T G C

BsiWI is typically used at 55°C, but is 50% active at 37°C.
PspOMI  (1103)
1 site
G G G C C C C C C G G G
ApaI  (1107)
1 site
G G G C C C C C C G G G

ApaI can be used between 25°C and 37°C.
BanII  (1107)
1 site
G R G C Y C C Y C G R G

Sticky ends from different BanII sites may not be compatible.
NdeI  (1299)
1 site
C A T A T G G T A T A C

Prolonged incubation with NdeI may lead to removal of additional nucleotides.
BstAPI  (1300)
1 site
G C A N N N N N T G C C G T N N N N N A C G

Sticky ends from different BstAPI sites may not be compatible.
AflII  (1356)
1 site
C T T A A G G A A T T C
ZraI  (1420)
1 site
G A C G T C C T G C A G
AatII  (1422)
1 site
G A C G T C C T G C A G
AmpR
1554 .. 2414  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 1:  signal sequence  
   1554 .. 1622  =  69 bp
   23 amino acids  =  2.6 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
1554 .. 2414  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 2:  
   1623 .. 2414  =  792 bp
   263 amino acids  =  28.9 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
1554 .. 2414  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
ATG
217 .. 219  =  3 bp
1 amino acid  =  149.2 Da
Product: lacZ start codon
ATG
217 .. 219  =  3 bp
1 amino acid  =  149.2 Da
Product: lacZ start codon
AcGFP1
289 .. 1008  =  720 bp
239 amino acids  =  26.9 kDa
Product: Aequorea coerulescens GFP
mammalian codon-optimized
AcGFP1
289 .. 1008  =  720 bp
239 amino acids  =  26.9 kDa
Product: Aequorea coerulescens GFP
mammalian codon-optimized
ori
2585 .. 3173  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
ori
2585 .. 3173  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
AmpR promoter
1449 .. 1553  =  105 bp
AmpR promoter
1449 .. 1553  =  105 bp
3' MCS
1009 .. 1108  =  100 bp
multiple cloning site
3' MCS
1009 .. 1108  =  100 bp
multiple cloning site
5' MCS
234 .. 281  =  48 bp
multiple cloning site
5' MCS
234 .. 281  =  48 bp
multiple cloning site
lac promoter
143 .. 173  =  31 bp
3 segments
   Segment 1:  -35  
   143 .. 148  =  6 bp
promoter for the E. coli lac operon
lac promoter
143 .. 173  =  31 bp
3 segments
   Segment 2:  
   149 .. 166  =  18 bp
promoter for the E. coli lac operon
lac promoter
143 .. 173  =  31 bp
3 segments
   Segment 3:  -10  
   167 .. 173  =  7 bp
promoter for the E. coli lac operon
lac promoter
143 .. 173  =  31 bp
3 segments
promoter for the E. coli lac operon
lac operator
181 .. 197  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
181 .. 197  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
ORF:  217 .. 1008  =  792 bp
ORF:  263 amino acids  =  29.5 kDa
ORF:  1554 .. 2414  =  861 bp
ORF:  286 amino acids  =  31.6 kDa
ORF:  2018 .. 2284  =  267 bp
ORF:  88 amino acids  =  9.2 kDa
Click here to try SnapGene

Download pAcGFP1.dna file

SnapGene

SnapGene is the easiest way to plan, visualize and document your everyday molecular biology procedures

  • Fast accurate construct design for all major molecular cloning techniques
  • Validate sequenced constructs using powerful alignment tools
  • Customize plasmid maps with flexible annotation and visualization controls
  • Automatically generate a rich graphical history of every edit and procedure

SnapGene Viewer

SnapGene Viewer is free software that allows molecular biologists to create, browse, and share richly annotated sequence files.

  • Gain unparalleled visibility of your plasmids, DNA and protein sequences
  • Annotate features on your plasmids using the curated feature database
  • Store, search, and share your sequences, files and maps

Individual Sequences & Maps

The maps, notes, and annotations in the zip file on this page are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as ’’www.snapgene.com/resources’’. Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Discover the most user-friendly molecular biology experience.