pDendra2

Vector for expressing Dendra2 in bacteria.

Sequence Author: Clontech (TaKaRa)

|Download SnapGene Viewer
No matches
EcoO109I (4107) AatII (4053) ZraI (4051) XmnI (3730) PvuI (3501) FspI (3353) NmeAIII (3279) BsrFI (3211) BsaI (3192) AhdI (3131) AlwNI (2654) AflIII - PciI (2238) BspQI - SapI (2122) BstAPI (2062) PaeR7I - XhoI (1) PsiI (49) MfeI (59) lac operator ATG BseRI (115) BsaBI * (125) BamHI (126) TspMI - XmaI (140) SmaI (142) BclI * (154) EcoNI (156) KasI (285) NarI (286) SfoI (287) PluTI (289) AleI (324) BanII (568) PmlI (587) BstXI (689) BsrGI (838) HindIII (849) BlpI (861) NheI (969) BmtI (973) Bpu10I (994) BspEI (1217) PasI (1453) MscI (1488) NcoI - StyI (1522) XbaI (1825) PfoI (1882) PflFI - Tth111I (1985) AccI (2010) BstZ17I (2011) NdeI (2061) pDendra2 4123 bp
EcoO109I  (4107)
1 site
R G G N C C Y Y C C N G G R

Sticky ends from different EcoO109I sites may not be compatible.
AatII  (4053)
1 site
G A C G T C C T G C A G
ZraI  (4051)
1 site
G A C G T C C T G C A G
XmnI  (3730)
1 site
G A A N N N N T T C C T T N N N N A A G
PvuI  (3501)
1 site
C G A T C G G C T A G C
FspI  (3353)
1 site
T G C G C A A C G C G T
NmeAIII  (3279)
1 site
G C C G A G ( N ) 18-19 N N C G G C T C ( N ) 18-19

Efficient cleavage requires at least two copies of the NmeAIII recognition sequence.
Sticky ends from different NmeAIII sites may not be compatible.
For full activity, add fresh S-adenosylmethionine (SAM).
BsrFI  (3211)
1 site
R C C G G Y Y G G C C R

Cleavage may be enhanced when more than one copy of the BsrFI recognition sequence is present.
After cleavage, BsrFI can remain bound to DNA and alter its electrophoretic mobility.
BsaI  (3192)
1 site
G G T C T C N C C A G A G N ( N ) 4

Sticky ends from different BsaI sites may not be compatible.
BsaI can be used between 37°C and 50°C.
AhdI  (3131)
1 site
G A C N N N N N G T C C T G N N N N N C A G

The 1-base overhangs produced by AhdI may be hard to ligate.
Sticky ends from different AhdI sites may not be compatible.
AlwNI  (2654)
1 site
C A G N N N C T G G T C N N N G A C

Sticky ends from different AlwNI sites may not be compatible.
AflIII  (2238)
1 site
A C R Y G T T G Y R C A

Sticky ends from different AflIII sites may not be compatible.
PciI  (2238)
1 site
A C A T G T T G T A C A

PciI is inhibited by nonionic detergents.
BspQI  (2122)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different BspQI sites may not be compatible.
SapI  (2122)
1 site
G C T C T T C N C G A G A A G N N N N

Sticky ends from different SapI sites may not be compatible.
SapI gradually settles in solution, so a tube of SapI should be mixed before removing an aliquot.
BstAPI  (2062)
1 site
G C A N N N N N T G C C G T N N N N N A C G

Sticky ends from different BstAPI sites may not be compatible.
PaeR7I  (1)
1 site
C T C G A G G A G C T C

PaeR7I does not recognize the sequence CTCTCGAG.
XhoI  (1)
1 site
C T C G A G G A G C T C
PsiI  (49)
1 site
T T A T A A A A T A T T
MfeI  (59)
1 site
C A A T T G G T T A A C
BseRI  (115)
1 site
G A G G A G ( N ) 8 N N C T C C T C ( N ) 8

Sticky ends from different BseRI sites may not be compatible.
BseRI quickly loses activity at 37°C.
Prolonged incubation with BseRI may lead to degradation of the DNA.
BsaBI  (125)
1 site
G A T N N N N A T C C T A N N N N T A G
* Blocked by Dam methylation.
BamHI  (126)
1 site
G G A T C C C C T A G G

After cleavage, BamHI-HF® (but not the original BamHI) can remain bound to DNA and alter its electrophoretic mobility.
TspMI  (140)
1 site
C C C G G G G G G C C C
XmaI  (140)
1 site
C C C G G G G G G C C C

Cleavage may be enhanced when more than one copy of the XmaI recognition sequence is present.
SmaI  (142)
1 site
C C C G G G G G G C C C

SmaI can be used at 37°C for brief incubations.
BclI  (154)
1 site
T G A T C A A C T A G T
* Blocked by Dam methylation.
BclI is typically used at 50-55°C, but is 50% active at 37°C.
EcoNI  (156)
1 site
C C T N N N N N A G G G G A N N N N N T C C

The 1-base overhangs produced by EcoNI may be hard to ligate.
Sticky ends from different EcoNI sites may not be compatible.
KasI  (285)
1 site
G G C G C C C C G C G G
NarI  (286)
1 site
G G C G C C C C G C G G

Efficient cleavage requires at least two copies of the NarI recognition sequence.
SfoI  (287)
1 site
G G C G C C C C G C G G
PluTI  (289)
1 site
G G C G C C C C G C G G

Efficient cleavage requires at least two copies of the PluTI recognition sequence.
AleI  (324)
1 site
C A C N N N N G T G G T G N N N N C A C
BanII  (568)
1 site
G R G C Y C C Y C G R G

Sticky ends from different BanII sites may not be compatible.
PmlI  (587)
1 site
C A C G T G G T G C A C
BstXI  (689)
1 site
C C A N N N N N N T G G G G T N N N N N N A C C

Sticky ends from different BstXI sites may not be compatible.
BsrGI  (838)
1 site
T G T A C A A C A T G T

BsrGI is typically used at 37°C, but is even more active at 60°C.
HindIII  (849)
1 site
A A G C T T T T C G A A
BlpI  (861)
1 site
G C T N A G C C G A N T C G

Sticky ends from different BlpI sites may not be compatible.
NheI  (969)
1 site
G C T A G C C G A T C G
BmtI  (973)
1 site
G C T A G C C G A T C G
Bpu10I  (994)
1 site
C C T N A G C G G A N T C G

Cleavage may be enhanced when more than one copy of the Bpu10I recognition sequence is present.
This recognition sequence is asymmetric, so ligating sticky ends generated by Bpu10I will not always regenerate a Bpu10I site.
Sticky ends from different Bpu10I sites may not be compatible.
BspEI  (1217)
1 site
T C C G G A A G G C C T
PasI  (1453)
1 site
C C C W G G G G G G W C C C

Sticky ends from different PasI sites may not be compatible.
MscI  (1488)
1 site
T G G C C A A C C G G T
NcoI  (1522)
1 site
C C A T G G G G T A C C
StyI  (1522)
1 site
C C W W G G G G W W C C

Sticky ends from different StyI sites may not be compatible.
XbaI  (1825)
1 site
T C T A G A A G A T C T
PfoI  (1882)
1 site
T C C N G G A A G G N C C T

Sticky ends from different PfoI sites may not be compatible.
PflFI  (1985)
1 site
G A C N N N G T C C T G N N N C A G

The 1-base overhangs produced by PflFI may be hard to ligate.
Sticky ends from different PflFI sites may not be compatible.
Tth111I  (1985)
1 site
G A C N N N G T C C T G N N N C A G

The 1-base overhangs produced by Tth111I may be hard to ligate.
Sticky ends from different Tth111I sites may not be compatible.
AccI  (2010)
1 site
G T M K A C C A K M T G

Efficient cleavage with AccI requires ≥13 bp on each side of the recognition sequence.
Sticky ends from different AccI sites may not be compatible.
BstZ17I  (2011)
1 site
G T A T A C C A T A T G
NdeI  (2061)
1 site
C A T A T G G T A T A C

Prolonged incubation with NdeI may lead to removal of additional nucleotides.
AmpR
3058 .. 3918  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 2:  
   3058 .. 3849  =  792 bp
   263 amino acids  =  28.9 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
3058 .. 3918  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
   Segment 1:  signal sequence  
   3850 .. 3918  =  69 bp
   23 amino acids  =  2.6 kDa
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
AmpR
3058 .. 3918  =  861 bp
286 amino acids  =  31.6 kDa
2 segments
Product: β-lactamase
confers resistance to ampicillin, carbenicillin, and related antibiotics
ATG
114 .. 116  =  3 bp
1 amino acid  =  149.2 Da
Product: start codon
ATG
114 .. 116  =  3 bp
1 amino acid  =  149.2 Da
Product: start codon
Dendra2
132 .. 821  =  690 bp
230 amino acids  =  26.1 kDa
Product: monomeric photoswitchable green-to-red fluorescent protein from Dendronephthya
mammalian codon-optimized
Dendra2
132 .. 821  =  690 bp
230 amino acids  =  26.1 kDa
Product: monomeric photoswitchable green-to-red fluorescent protein from Dendronephthya
mammalian codon-optimized
CmR
1008 .. 1667  =  660 bp
219 amino acids  =  25.7 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
CmR
1008 .. 1667  =  660 bp
219 amino acids  =  25.7 kDa
Product: chloramphenicol acetyltransferase
confers resistance to chloramphenicol
ori
2299 .. 2887  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
ori
2299 .. 2887  =  589 bp
high-copy-number ColE1/pMB1/pBR322/pUC origin of replication
AmpR promoter
3919 .. 4023  =  105 bp
AmpR promoter
3919 .. 4023  =  105 bp
lambda t0 terminator
870 .. 964  =  95 bp
transcription terminator from phage lambda
lambda t0 terminator
870 .. 964  =  95 bp
transcription terminator from phage lambda
rrnB T1 terminator
1732 .. 1818  =  87 bp
transcription terminator T1 from the E. coli rrnB gene
rrnB T1 terminator
1732 .. 1818  =  87 bp
transcription terminator T1 from the E. coli rrnB gene
T5 promoter
10 .. 54  =  45 bp
4 segments
   Segment 1:  
   10 .. 24  =  15 bp
bacteriophage T5 promoter for E. coli RNA polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
4 segments
   Segment 2:  -35  
   25 .. 30  =  6 bp
bacteriophage T5 promoter for E. coli RNA polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
4 segments
   Segment 3:  
   31 .. 47  =  17 bp
bacteriophage T5 promoter for E. coli RNA polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
4 segments
   Segment 4:  -10  
   48 .. 54  =  7 bp
bacteriophage T5 promoter for E. coli RNA polymerase, with embedded lac operator
T5 promoter
10 .. 54  =  45 bp
4 segments
bacteriophage T5 promoter for E. coli RNA polymerase, with embedded lac operator
lac operator
62 .. 78  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
62 .. 78  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
30 .. 46  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
lac operator
30 .. 46  =  17 bp
The lac repressor binds to the lac operator to inhibit transcription in E. coli. This inhibition can be relieved by adding lactose or isopropyl-β-D-thiogalactopyranoside (IPTG).
ORF:  3188 .. 3454  =  267 bp
ORF:  88 amino acids  =  9.2 kDa
ORF:  114 .. 848  =  735 bp
ORF:  244 amino acids  =  27.5 kDa
ORF:  1008 .. 1667  =  660 bp
ORF:  219 amino acids  =  25.7 kDa
ORF:  3058 .. 3918  =  861 bp
ORF:  286 amino acids  =  31.6 kDa
Click here to try SnapGene

Download pDendra2.dna file

SnapGene

SnapGene is the easiest way to plan, visualize and document your everyday molecular biology procedures

  • Fast accurate construct design for all major molecular cloning techniques
  • Validate sequenced constructs using powerful alignment tools
  • Customize plasmid maps with flexible annotation and visualization controls
  • Automatically generate a rich graphical history of every edit and procedure

SnapGene Viewer

SnapGene Viewer is free software that allows molecular biologists to create, browse, and share richly annotated sequence files.

  • Gain unparalleled visibility of your plasmids, DNA and protein sequences
  • Annotate features on your plasmids using the curated feature database
  • Store, search, and share your sequences, files and maps

Individual Sequences & Maps

The maps, notes, and annotations in the zip file on this page are copyrighted material. This material may be used without restriction by academic, nonprofit, and governmental entities, except that the source must be cited as ’’www.snapgene.com/resources’’. Commercial entities must contact GSL Biotech LLC for permission and terms of use.

Discover the most user-friendly molecular biology experience.